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EXECUTIVE SUMMARY 
 
 

Downscaling is the term used to describe the various methods used to translate the climate 
projections from coarse resolution GCMs to finer resolutions deemed more useful for assessing 
impacts.  Projections of future climate are produced using complex, coupled atmosphere-ocean 
models (GCMs).  The GCMs are most reliable at the continental scale.  Due to the inherent 
uncertainty of the climate system and the inevitable existence of model errors, multi-model 
ensembling is the recommended approach for characterizing expected climate changes.  As 
downscaling is dependent on the ability of GCMs to successfully project the climate change 
signal, it is limited to where that signal is clear.  Assessments of climate change in Africa 
indicate some consensus of reduced winter rainfall in southern Africa, increased annual rainfall 
in east Africa and uncertainty for the rest of Africa.  Selection of GCMs that “do better” over 
Africa, or any region, is difficult and probably not warranted, given the general parity in model 
skill and the difficulty in identifying which models are more skillful.  Ensemble means or 
medians offer the highest level of projection accuracy.  Downscaling approaches are generally 
categorized as dynamical, using regional climate models, and statistical, using empirical 
relationships.  However, dynamical downscaling often includes statistical modeling in the form 
of “bias correction.”  Dynamical downscaling is useful for incorporating topographic features, 
such as strong orography, and land use and vegetation.  It is recommended where those features 
play a significant role in regional climate.  However, computational time and the uncertainties 
that accompany complex models outweigh the benefits of dynamical downscaling where these 
features are not significant.  The spatial resolution that can be achieved is on the order of tens of 
kilometers.  Statistical downscaling is simpler and more efficient than dynamical downscaling.  
It is preferred where estimates of specific variables, especially at point locations, are sought for 
input to sector models (e.g., hydrologic models) or decision making.  However, statistical 
modeling can mask a true understanding of regional climate dynamics and estimates may be 
overconfident.  In summary, downscaling is best understood as an attempt to increase the 
understanding of climate change influences at the regional scale.  In that context, a variety of 
methodologies should be explored, using all tools possible to increase that understanding.  A set 
of “Best Practices” is recommended for pursuing this effort.  
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OUTLINE SUMMARY 
 
 
1. Climate Forecasting Basics 

• Climate projections are presently produced with the aid of complex, coupled 
atmosphere-ocean general circulation models (AOGCMs).  

• The most comprehensive assessment of ongoing climate modeling efforts is 
carried out by the Intergovernmental Panel on Climate Change (IPCC).  

• A range of climate simulations was surveyed in the recent IPCC Fourth 
Assessment Report (AR4). 

• Three marker scenarios were emphasized, designated A2, A1B and B1, ordered 
here from greatest to least greenhouse gas concentrations, and consequently, 
degree of warming. 

• Most, if not all, of the AOGCMs discussed in the AR4 incorporate interactive 
land-surface schemes.  

2. What can we learn from GCMs? 
• GCMs generally are more skillful in simulating temperature than simulating 

precipitation  
• GCMs are more skillful at predicting means (averages) of precipitation or 

temperature than any higher order statistics (i.e., variability). 
• The skill of GCM projections of temperature and precipitation generally decrease 

along with the spatial and temporal scales under consideration. That is, the models 
have more skill over larger spatial areas (continental or regional scale) and larger 
time scales (long term mean versus monthly values) 

• Currently, there is a lack of ability to predict near term climate change, i.e., 
climate variations on decadal time scales. 

• Interannual climate variability, in some cases related to ENSO (El Niño/Southern 
Oscillation) is likely to dominate precipitation variability relative to changes due 
to secular trends for the near term (next 10 to 20 years) 

3.  What is the thinking on Africa? 
• Uncertainty reigns for much of the tropics 
• Wet get wetter; dry get dryer 
• Winter rainfall in southern Africa is likely to decrease 
• Annual mean rainfall is likely to increase in east Africa 

4.  Selection of GCMs 
• Current GCM runs have not been designed for assessing historical skill in the 

variables that are useful (i.e., only long term summary statistics can be compared 
for precipitation) 

• A wide variety of metrics can be considered for evaluating climate models, but 
there are no models that perform uniformly well across a large suite of such 
measures. 

• Correlation with 20th century observations does not necessarily imply skillful 
projections of the 21st century 
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• Multi-model ensembling remains the recommended approach for assessing 
climate changes.  This helps reduce the effects of model errors in one particular 
model and natural variability (randomness) in any particular run 

• Screening of GCM may be possible to remove models that do not demonstrate 
any skill for a region.  All others could then be included in the multi-model 
ensemble.   

5.  Introduction to Downscaling 
• Downscaling is the term for using models (statistical or dynamic) to increase the 

resolution of GCM output for a particular location.   
• It may be performed to increase the temporal resolution (e.g., from monthly to 

daily values of P and T) or the spatial resolution (e.g., from a GCM grid cell size 
down to the weather station scale) 

• Since downscaling is a transformation of GCM outputs, it cannot add skill that is 
not present in the GCM output.  

• It is most appropriate where the GCM output has some basis for being skillful 
(e.g., demonstrated consistency between GCM and observed climate).   

6.  Dynamical Downscaling 
• Dynamical downscaling uses regional climate models (RCMs) that transform 

outputs from GCMs into finer spatial and temporal resolution outputs.  
• Their primary contribution is through the inclusion of more realistic topography 

and land use/vegetation.   
• Due to systematic errors that inevitably occur, RCMs require statistical 

corrections to provide realistic output.  
7.  Statistical Downscaling 

• Statistical downscaling utilizes relationships between GCM output and historical 
data to produce finer spatial and temporal resolution climate data at the regional 
level.   

• Methods are typically as effective and less expensive than dynamical 
downscaling. 

• Especially useful for temporal downscaling (from monthly to daily values) 
8.  Hydrologic Modeling from Downscaled GCM projections 

• Hydrologic models add little uncertainty relative to the uncertainty associated 
with climate models 

• The choice of hydrologic model should be determined in accordance with the 
ability to estimate the desired variable 

• Hydrologic model choice affects the downscaling method selection 
9.  Downscaling applications in Africa 

• Many downscaling studies have been performed for diagnosis of regional climate 
features (e.g., Sahelian drought). 

• Fewer downscaling studies for hydrologic applications have been completed. 
• Emphasis is on providing better understanding of regional climate and responses 

to climate change, over specific projections of change.  
10.  Downscaling “Best Practices” 

• Climate change projections should be based on multi-GCM ensembles 
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• Downscaling is appropriate where there is consensus on the direction of change in 
the GCMs 

• Downscaling must be based on an understanding of how regional climate is 
expected to respond to large scale climate forcings and relative to the dominant 
modes of climate variability (interannual, decadal) at a particular location. 

• In any specific case, the selection of downscaling methodology should be based 
on the particular application in terms of the variables of interest, time frame and 
spatial resolution required, the existence of previous studies and the availability of 
historical observation data.   

• Statistical downscaling tends to be a better value than dynamical downscaling for 
hydrologic applications, being as effective and less expensive 

• Dynamical downscaling is valuable where local topography and land use or 
vegetation have significant influence on regional climate.   

• Temporal precipitation downscaling to resolutions of daily scale is an active 
research area, with statistical approaches showing the most promise. 

• Results of climate change projections and downscaled regional results should be 
understood within the context of climate variability at interannual and decadal 
timescales, as well as socioeconomic changes. 
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1.  Climate Forecasting Basics 
 
 
Climate projections are presently produced with the aid of complex, coupled 
atmosphere-ocean general circulation models (AOGCMs).  The simulations from such 
models include a full suite of climate variables, from which future climate states – as 
represented in the individual models – can be diagnosed. Typically, ensemble methods 
are utilized in order to characterize the uncertainty ranges associated with such 
projections. 
 
 
 
 
 
The most comprehensive assessment of the ongoing climate modeling efforts being 
carried out throughout the world is performed by the Intergovernmental Panel on 
Climate Change (IPCC).  The IPCC has recently released its Fourth Assessment Report 
(AR4, Solomon et al., 2007). This comprehensive document reports research findings 
based on simulations from 25 climate models.  
 
A range of climate simulations was surveyed in the recent IPCC Fourth Assessment 
Report (AR4).  The modeling centers that participated in the AR4 were asked to perform 
a variety of simulations. These included the “20th Century Climate in Coupled Models” 
(20C3M) experiment, for which each center made a “best attempt” to simulate the 
climate of the 20th century, and several “marker” scenarios for the future, based on the 
IPCC Special Report on Emissions Scenarios (Nakicenovic et al., 2000).  
 
Three marker scenarios were emphasized, designated A2, A1B and B1, ordered here 
from greatest to least greenhouse gas concentrations, and consequently, degree of 
warming.  The marker scenarios span a range of possible trajectories for the evolution 
of human society during the coming century, including regional populations, energy 
sources, land use and other significant climatic influences. When “processed” by the 
IPCC climate models, a corresponding range of climate responses results. The marker 
scenarios utilized are designated A2, A1B and B1, ordered from greatest to least 
greenhouse gas concentrations, and consequently, degree of warming. The “middle,” 
A1B scenario is often used illustratively, although there is some evidence that the actual 
global trajectory has been closer to A2. Thus, the B1 scenario would probably be least 
likely to represent the climate of tomorrow, given recent observations. 
 
Most, if not all, of the AOGCMs discussed in the AR4 incorporate interactive land-
surface schemes.  The land-surface schemes are interactive in the sense that fluxes 
from the land surface are “felt” by the modeled atmospheres. Such schemes can be 
quite sophisticated, taking into account different vegetation types, interaction between 
solar radiation and canopy cover, transpiration, the effects of soil moisture and so on. 
However, carbon-cycle feedbacks are not generally modeled, and possible changes in 
vegetation cover are not presently taken into account in climate change simulations. 

• Climate projections are presently produced with the aid of complex, coupled atmosphere-ocean 
general circulation models (AOGCMs).  

• The most comprehensive assessment of ongoing climate modeling efforts is carried out by the 
Intergovernmental Panel on Climate Change (IPCC).  

• A range of climate simulations was surveyed in the recent IPCC Fourth Assessment Report 
(AR4). 

• Three marker scenarios were emphasized, designated A2, A1B and B1, ordered here from greatest 
to least greenhouse gas concentrations, and consequently, degree of warming. 

• Most, if not all, of the AOGCMs discussed in the AR4 incorporate interactive land-surface 
schemes.  
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2.  What can we learn from GCMs about future climate? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
GCMs generally are more skillful in simulating temperature than simulating precipitation.  
From the IPCC Fourth Assessment Report (AR4) Ch. 8, “Climate models 
and their evaluation” (Solomon et al., 2007):  
 
There is considerable confidence that Atmosphere-Ocean General Circulation Models (AOGCMs) provide credible 
quantitative estimates of future climate change, particularly at continental and larger scales. Confidence in these 
estimates is higher for some climate variables (e.g., temperature) than for others (e.g., precipitation). 
 
Thus, both the variable and the spatial scale should be considered when deciding how 
much confidence to place in model-simulated climate changes. For a given spatial 
scale, temperature is generally simulated with greater fidelity than precipitation. 
Although a hydrologic variable such as streamflow represents an aggregation of rainfall 
(over a basin-scale area), effects of evaporation (which depends in part on winds), soil, 
vegetation… interacting with topography,  may introduce biases.  
 
GCMs are more skillful at predicting means (averages) of precipitation or temperature 
than any higher order statistics (i.e., variability).  Both temperature and precipitation (the 
two surface variables of primary importance for life at the Earth’s surface) can be 
characterized in a variety of ways. In addition to annual means, each exhibits a more-or-
less characteristic seasonal cycle. For many applications, maximum and minimum 
temperatures are as important as mean values, while with respect to precipitation such 
“higher-order” features as frequency of heavy rainfall events, or length of dry spells, 
may have significant sectoral impacts. Such attributes may be poorly simulated by 
models even though mean annual precipitation is reasonably well-represented. Thus a 
statement about which variables are well- or poorly-simulated should be qualified with 
respect to those attributes that are most important for the application at hand. 
 

• GCMs generally are more skillful in simulating temperature than simulating precipitation  
• GCMs are more skillful at predicting means (averages) of precipitation or temperature than any 

higher order statistics (i.e., variability). 
• The skill of GCM projections of temperature and precipitation generally decrease along with the 

spatial and temporal scales under consideration. That is, the models have more skill over larger 
spatial areas (continental or regional scale) and larger time scales (long term mean versus monthly 
values) 

• Currently, there is a lack of ability to predict near term climate change, i.e., climate variations on 
decadal time scales. 

• Interannual climate variability, in some cases related to ENSO (El Niño/Southern Oscillation) is 
likely to dominate precipitation variability relative to changes due to secular trends for the near 
term (next 10 to 20 years) 
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Dai (2006), in an assessment of precipitation in the AR4 suite of climate models, found 
systematic biases in the statistics of daily rainfall, particularly in the tropics, where 
models tend to produce too much drizzle and too few heavy rainfall events. These 
effects tend to cancel, so that mean precipitation amounts may be reasonable, despite 
the distributional bias. There were also other systematic biases, including a tendency for 
too large a fraction of rainfall to be generated by convective, as opposed to stratiform, 
processes, and biases in the diurnal cycle of rainfall. The latter may be particularly 
important for climate simulations, since phasing of the diurnal cycle of clouds has a 
large impact on the surface radiation budget. 
 
The skill of GCM projections of temperature and precipitation generally decrease along 
with the spatial and temporal scales under consideration.  That is, the models have 
more skill over larger spatial areas (continental or regional scale) and larger time scales 
(long term mean versus monthly values).  Resolution in the AR4 models is typically on 
the order of 2-3° (latitude and longitude). However, the models cannot be considered 
reliable on the scale of individual grid boxes. In general, IPCC authors consider the 
present generation of models to be relatively reliable only on continental or 
subcontinental scales, so much of the detailed discussion on regional climate 
projections (IPCC Ch. 11)  is organized with respect to regions of this scale (e.g., Africa 
is divided into four regions, South America into just two). In comparisons of differing 
time periods, the use of 20-year means is also typical in the AR4, although this may be 
less a matter of “reliability” than simply obtaining statistical estimates of reasonably 
small variance. 
 
Currently, there is a lack of ability to predict near term climate change, i.e., climate 
variations on decadal time scales.  There has been a recent interest on climate changes 
that might occur over some period that is intermediate between the 6-9 month lead 
times characteristic of seasonal-interannual (SI) forecasts and the 100-year time 
horizons considered in assessment reports of the IPCC. Thus, emphasis has been 
placed on changes that might occur within the span of a few decades, such a time 
frame having more utility in practical, “actionable” terms than century-length periods. 
Consideration of climate change on such “near-term” time scales poses special 
problems,  however, owing to the nature of climate variability, and the processes 
responsible for it. 
 
On the SI time scale, there is a single dominant source of climate variability: The El 
Niño-Southern Oscillation, or ENSO. ENSO is a more-or-less deterministic process that 
is relatively well-understood, has been successfully represented in climate models and 
for which there exists demonstrated  (although not perfect) predictive skill. Climate 
variations that may occur over the coming few decades, on the other hand, are not 
known to be governed by a comparable, dominant mechanistic process. Not only are 
there several processes operating in the climate system on such time scales, whose 
effects may be mutually reinforcing or opposing, but it is quite likely that a good deal of 
variability on these “decadal” scales is not deterministic but random, i.e., arising from 
essentially unpredictable atmosphere-ocean interactions. Although expressions of 
decadal variability (such as the Pacific Decadal Oscillation, or Atlantic Multidecadal 
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Variability) have been identified, and studied for some time, the underlying mechanisms 
are themselves poorly understood at present, and there exists essentially no 
demonstrated predictive skill for these processes at the present time. 
 
Since true decadal predictability, particularly in the regional sense, has not yet been 
demonstrated, the most sensible course of action, with respect to user needs, may be to 
try to at least characterize regional decadal variability, so that a range of climatic 
uncertainty for the next few decades can be estimated. This may be accomplished by 
various means, the most promising involving the use of both instrumental records and 
paleodata (such as tree ring chronologies). In general, for the characterization of 
variability on long time scales, long records are required, which is why the use of 
paleodata assumes increasing importance in considering “near term” climate change. 
 
 
Climate variability related to ENSO (El Nino/Southern Oscillation) is likely to dominate 
precipitation variability relative to changes due to secular trends for the near term (next 
10 to 20 years).   In many regions (including most tropical locations), the portion of 
climate variability ascribable to decadal “modes” is relatively small, while that 
attributable to ENSO is significant. In addition, secular trends in precipitation tend to be 
small. Thus, it is likely that over the coming few decades, year-to-year variations will 
dominate climate changes due to the more slowly evolving decadal processes. 
However, to the degree that the latter in effect define the climatic “background,” the 
dominant year-to-year variations will be occurring against a slowly shifting mean state; 
even over the course of a few decades such shifts may produce significant impacts, for 
example in the form of more frequent exceedances of critical thresholds for agriculture 
or human health.  
 
 
3.  What is the current thinking on Africa? 
 
 
 
 
 
 
 
 
 
 
 
 
Current understanding of climate change in Africa mirrors that for the tropics in general: 
theoretical understanding of the dynamics of climate is weaker than for mid- to high- 
latitudes, and is exemplified in the lack of consensus among models in their projections 
of climate change, especially precipitation. In mid to high latitudes, warming and a 
reduced equator-to-pole temperature gradient are expected to be accompanied by a 

 
• Uncertainty reigns for much of the tropics 
• Wet get wetter; dry get dryer 
• Winter rainfall in southern Africa is likely to decrease 
• Annual mean rainfall is likely to increase in east Africa 
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poleward shift in precipitation, which would make the subtropical latitudes drier, and 
higher latitudes wetter. The drying projected for the southern African Cape and 
Mediterranean coast of North Africa is a manifestation of the former. In addition, 
projections of change in the intensity and frequency of ENSO, the dominant mode of 
seasonal to interannual climate variability, whose impact is most strongly felt throughout 
the tropics, are uncertain.  
 
That is not to say that there are no hypotheses about how tropical climate change may 
come about. The increase in precipitation that is projected with some confidence in 
eastern equatorial Africa is consistent with the idea that “the rich will get richer” – that is 
to say, that regions where climatological rainfall is abundant, the regions at the core of 
monsoons, will get wetter, and conversely, that regions at the margins, like the 
Caribbean basin and Central America (the Sahel?), may get drier (Neelin et al 2003). 
This is because a warmer atmosphere is also moister, hence at the core of monsoon 
regions, where there is no lack of moisture, warmer may imply wetter. In contrast, a 
reduction in moisture supply at the margins, where moist and dry air meet, could limit 
the increase in precipitation that one would expect thermodynamically, from the 
increase in atmospheric temperature. Uncertainty in tropical climate change is 
compounded by the fact that the monsoon systems are dynamically interconnected. 
While it is reasonable to expect that a strengthening of the South Asian monsoon, or an 
increase in precipitation over the Maritime continent/Western Pacific warm pool, may 
have global impacts, just like ENSO does, exactly how that may come about is not fully 
understood. 
 
According to the IPCC (AR4), winter rainfall in southern Africa is likely to decrease, 
annual mean rainfall is likely to increase in east Africa while other areas remain 
uncertain. 
From IPCC Chapter 11, “Regional climate projections”: 
 
Re simulations of present climate: 
 
There are biases in the simulations of African climate that are systematic across the MMD [i.e., IPCC] models, with 
90% of models overestimating precipitation in southern Africa, by more than 20% on average (and in some cases by 
as much as 80%) over a wide area often extending into equatorial Africa. 
  
Re simulations of future climate: 
 
Rainfall in southern Africa is likely to decrease in much of the winter rainfall region and western margins. There is 
likely to be an increase in annual mean rainfall in East Africa. It is unclear how rainfall in the Sahel, the Guinean 
Coast and the southern Sahara will evolve. 
 
In this case it appears that changes in model-simulated rainfall are trusted to some 
extent, even though the models may not simulate present-day rainfall very well. On the 
other hand, the last of these statements (“It is unclear…”) reflects a lack of consensus 
among the IPCC models, with respect to Sahel rainfall.  
 
One additional caveat regarding simulations of African climate: None of the IPCC 
models predict vegetation changes, i.e., in all simulations vegetation is prescribed. This 

IRI Technical Report 08-05: IRI Downscaling Report



 11 

means that potentially important precipitation feedbacks involving the land surface are 
not represented in these models. 
 
 
4.  Selection of GCMs 
 
 
 
 
 
 
 
 
 

•  
•  
•  
•  
•  

 
 
Comparing GCMs for suitability for a particular region or in terms of a particular output 
(e.g., precipitation) is an area of active research.  A number of concerns accompany 
such efforts.  The idea of testing the various models and choosing one (or a small 
subset) that performs well for a region naturally arises. Cook and Vizy (2006) have done 
just this, with a focus on the west African monsoon. From their findings, we have: 
 
Based on the quality of their twentieth-century simulations over West Africa in summer, three GCMs are chosen for 
analysis [from an initial set of 18]. Each of these models behaves differently in the twenty-first-century simulations. 
 
The authors used a detailed analysis of models to determine which were best at 
simulating the historical observations over West Africa.  They chose three from among 
18, and yet those three models disagreed on their projections of climate change.  This is 
another indication that present-day simulation skill, although it is sometimes regarded 
as a prerequisite, may not be sufficient as an indicator of skill in simulating future 
climates. Of the three models selected in the initial round, (GFDL-CM2.0, MRI-
CGCM2.3.2 and MIROC3.2 medres), Cook and Vizy identified the MRI model as 
producing the most plausible future simulations, given the known dynamics of the west 
African monsoon system.  
 
While the rationale for their procedure is understandable, the selection of a single model 
with which to predict future climate implies a belief that the outcomes predicted by this 
model have probability = 1, while those from even the other two “finalists” have 
probability = 0, i.e., there is absolutely no uncertainty in the projection that is attributable 
to imperfect knowledge about the representation of climate in numerical models. Even 
on the basis of well-reasoned arguments, this seems an overly radical position. 

 
• Current GCM runs have not been designed for assessing historical skill in the variables that are 

useful (i.e., only long term summary statistics can be compared for precipitation) 
• A wide variety of metrics can be considered for evaluating climate models, but there are no 

models that perform uniformly well across a large suite of such measures. 
• Correlation with 20th century observations does not necessarily imply skillful projections of the 

21st century 
• Multi-model ensembling remains the recommended approach for assessing climate changes.  This 

helps reduce the effects of model errors in one particular model and natural variability 
(randomness) in any particular run 

• Screening of GCM may be possible to remove models that do not demonstrate any skill for a 
region.  All others could then be included in the multi-model ensemble.   
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It is also important to note that this study focused on a very specific and well-studied 
region, whose climate dynamics could therefore be evaluated in detail in climate 
models. Without an analysis of similar depth, it is not possible to say that the MRI model 
would perform similarly well for South Africa, or other African regions.  
 
Multi-model ensembling remains the recommended approach for assessing climate 
changes.  This helps reduce the effects of model errors in one particular model and 
natural variability (randomness) in any particular run.  The study of Cook and Vizy leads 
us to another important idea, one that is in evidence throughout the IPCC AR4. This is 
the use of a multimodel ensemble, meaning a group of climate models, for estimating 
not only potential changes in climate  but also the uncertainties associated with those 
changes. A single model, if run multiple times with differing initial conditions, can 
provide an estimate of the uncertainty due to natural variability. But there are also 
uncertainties associated with model physics and parameterizations, as well as with 
structural aspects of the models themselves. No individual model can span the range of 
these uncertainties. If, as is sometimes reported in the pages of the AR4, there is a 
broad “consensus” among models for some aspect of climate change, then we can at 
least say that such a change is robust with respect to model formulation and physics, 
while at the same time the spread among models provides an estimate of the 
uncertainty in the projected climate outcome owing to uncertainties in the modeling 
framework. This information is valuable, because it helps determine the level of trust we 
can place in the projected climate changes. 
 
What then, about models that fail to reproduce even the most basic aspects of the 
climate of a particular region? Must these also be included in a multimodel ensemble? 
The IPCC often reports multimodel means (or medians), while using the spread among 
models to quantify uncertainty. This is typically done without the elimination or 
suppression of individual models. Paradoxically, the work of Cook and Vizy illustrates 
the value of this approach, in that it demonstrates how much detailed analysis must be 
applied in the case of just a single climate regime (the west African monsoon), in order 
to stratify models by performance. Use of the whole ensemble can therefore be seen as 
an expedient, given that such detailed studies are lacking for many localized climate 
systems. 
 
Screening of GCM may be possible to remove models that do not demonstrate any skill 
for a region.  All others could then be included in the multi-model ensemble.   It is 
nevertheless possible that some sort of screening might profitably be employed, 
whereby those models deemed grossly unrepresentative of the regional climate in 
question might be eliminated from the ensemble, leaving a “core” group that has at least 
passed some minimal qualification check. The issue of model metrics, i.e., the “scoring” 
of models in some way with respect to their simulation fidelity, is a complex one 
(Gleckler et al., 2007). Assuming a screening could be applied, this would represent a 
middle path between attempting to choose the single “best” model for a particular region 
and uncritically accepting all models, and would retain some advantages of the 
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discrimination process while also providing uncertainty estimates for climate change 
projections. 
 
The figure below, from Gleckler et al., (2007) is illustrative of two important points.  The 
figure depicts model errors in the major GCMs.  First, the two results with the lowest 
errors (far left on x-axis) are the multimodel mean and median.  These values clearly 
outperform the results of every individual model.  Second, the individual models vary in 
their ability to skillfully reproduce various climate variables (listed in the box on the right) 
but none standout as skillful in comparison to the multimodel mean or median.  There 
are, however, three models at the right of the x-axis that appear to exhibit more errors 
than the rest and may be candidates for screening.  
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5.  Introduction to Downscaling 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Global climate models (GCMs) are typically run at relatively coarse spatial resolutions, 
generally greater than 2.0° latitudinally and longitudinally.  The result is a spatial scale 
mismatch between available climate change projections and the scale of interest to 
most water resources users (e.g. subcatchment or gridded watershed) (Varis et al 
2004).  To overcome this, statistical models or dynamical regional climate models 
(RCMs), with higher spatial resolution, are constructed for downscaling to smaller areas.  
These high resolution models utilize small-scale features, e.g., vegetation and 
topography in the case of dynamical model, or empirical relationships in statistical 
models, that are otherwise poorly represented in the low resolution GCMs.   
 
In essence, the models “translate” the larger scale climate dynamics to local effects on 
precipitation, temperature and other surface variables.  As a result, for the local results 
to be meaningful, the larger scale dynamics provided by the GCM must be skillful and 
the downscaling approach must also be skillful.  Thus, a prerequisite for attempting 
downscaling is some confidence in the climate signal that is intended to be downscaled.   
 
If downscaling is deemed appropriate, there is a choice among dynamical or statistical 
approaches.  Dynamical downscaling is accomplished with regional climate models that 
use the results of GCMs as their boundary conditions.  For the case of dynamical 
downscaling, the question of model skill is prominent.  Regional models are highly 
complex and as such, accompanied by questions of uncertainty in model results.  The 
lack of the ability to validate the models’ responses to climate changes means that the 
uncertainty remains difficult to characterize.  In the case of statistical downscaling, the 
major question is the validity of the stationarity assumption that inevitably underpins 
such formulations.  That is, statistical downscaling is based on empirical relationships 
found in past climate observations and thus, may or may not hold in the possible future 
climates.      
 

 
•  Downscaling is the term for using models (statistical or dynamic) to increase the resolution of 

GCM output for a particular location.   
• It may be performed to increase the temporal resolution (e.g., from monthly to daily values of P 

and T) or the spatial resolution (e.g., from a GCM grid cell size down to the weather station scale) 
• Since downscaling is a transformation of GCM outputs, it cannot add skill that is not present in 

the GCM output.  
• It is most appropriate where the GCM output has some basis for being skillful (e.g., demonstrated 

consistency between GCM and observed climate).   
• Downscaling is best practiced as an attempt to increase the understanding of climate change 

influences on regional climate 
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In view of the limitation of GCMs and dynamical and statistical downscaling approaches, 
the recommended approach to downscaling is to view it as an attempt to improve the 
understanding of regional climate and climate change influences on it.  All sources of 
information should be exploited, including dynamical and statistical downscaling, and 
analysis of historical variability.  In most regions in Africa, interannual variability such as 
related to ENSO (east and southern Africa) and decadal scale variability (west Africa) 
have major influences on regional climate.  Since the effect of climate change on these 
phenomenon are not well understood, consideration of these sources of variability must 
be prominent when planning for future climate.  
 
 
6.  Dynamical Downscaling 
 
 
 
 
 
 
 
 
 
 
 
 
General Theory  
 
Dynamical downscaling seeks to couple large scale climate dynamics and local climate 
and hydrological features.  It does so by utilizing higher resolution regional climate 
models (RCMs) that respond to the output of GCMs.  The GCM output is provided as 
boundary conditions, which are the values at the edges of the spatial domain of the 
RCM.  RCMs are used for downscaling seasonal climate forecasts and for diagnostic 
studies of regional climate in addition to their use with climate change projections.  In 
diagnostic studies, the RCMs are often run with observations of the actual climate as 
the boundary conditions.  This approach has been used extensively for investigations of 
the Sahel drought of the late 20th century (see Jenkins et al., 2002).  Since such runs 
are based on historical climate, in theory they could serve as a basis for comparisons 
between RCMs. In practice however, the spatial domain, years and seasons analyzed 
are often not matched, precluding simple comparisons (Pal et al., 2007).    
 
Principles within RCMs are very similar to GCMs (fluid dynamics of atmospheric 
physics, etc.), only concentrated over a finer spatial resolution and therefore able to 
incorporate additional local features (i.e. topography, land cover) (Xu et al 2005).   Initial 
and boundary conditions, consisting of atmospheric/meteorological and surface 
conditions, are generated from the GCM (or a historical database [NCEP, ECWMF] for 

 
• Dynamical downscaling uses regional climate models (RCMs) that transform outputs from GCMs 

into finer spatial and temporal resolution outputs.  
• Their primary contribution is through the inclusion of more realistic topography and land 

use/vegetation.   
• Due to systematic errors that inevitably occur, RCMs require statistical corrections to provide 

realistic output.  
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calibration) (Cocke and LaRow 2000; von Storch et al 2000).  RCMs are often nested 
within GCMs to save on processing time and costs, in lieu of running the two models in 
successive fashion.  However, the nested structure is still based on mono-directionality 
– from the GCM to the RCM only.  That means the boundary conditions provided by the 
GCM do not respond to the evolution of climate conditions within the RCM.   
 
Horizontal resolution for most RCMs is on the order of tens of kilometers, which begins 
to be effective for distributed hydrological and land surface model processing, but may 
still be too large for effective impact studies (Schulze 1997).  Research shows that a 
resolution jump of approximately 10 represents the upper limit for RCMs to be able to 
regenerate the high-resolution information of the GCM large domain (Leung et al 2003).   
 
In terms of temporal resolution, RCMs are usually most skillful at monthly or coarser 
timescales.  Distributed hydrological and land surface models often require daily inputs 
(Guo et al 2002; Wilby et al 1998).  This is often achieved via stochastic “weather 
generators” which are statistical models that randomly generate daily weather that is 
consistent with the seasonal or monthly statistics provided by the RCM or GCM.  In 
general RCMs are much more useful for spatial downscaling rather than temporal 
downscaling.   
 
Some degree of forecast uncertainty estimates are accomplished by using forecast 
ensembles, which are a series of runs that are initialized with slightly different initial 
conditions.  This accounts for natural variability (in theory) but does not account for the 
uncertainty associated with model errors.  For this reason, as with the case of GCMs, 
multi-model ensembling is recommended to account for model uncertainty.   
 
In dynamical downscaling, an RCM must be given realistic boundary conditions if one 
expects it to produce realistic downscaled simulations. If this condition is met, RCMs 
add significant orographic and physical geography details to the simulations that is 
absent in GCM runs.  However, where such orography is not important, the 
uncertainties associated with RCMs may outweigh any benefit of higher resolution 
(Jung and Kuntsmann, 2007)  
 
Assumptions and Concerns 
While the advancement of RCMs has been significant in the recent past, concerns and 
obstacles remain.  One of the largest sources of model error is the parameterization of 
convective precipitation (Pal et al., 2007).  This is naturally a significant concern in the 
tropics where convection is the major source of moisture transport.  Another major 
sticking point is the inherited systematic biases from GCMs (Hay et al 2002; Vari et al 
2004).   For example, RCMs tend to underestimate extreme precipitation (Jorgensen et 
al 2004) just as GCMs do.   
 
There exists a need to reduce biases in present simulations and improve representation 
of climate change feedbacks (i.e. clouds) (Murphy 2000).  Bias is a systematic 
difference or error between the model output and observations.  Bias typically increased 
with resolution, and so RCMs may have more bias.  Graham (2007) finds that the 
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choice of GCM boundary conditions for an RCM is more influential on assessment of 
hydrological change than the choice of emissions scenario.  Thus, the need for a multi-
model approach to using GCMs is again warranted.   
 
Currently, systematic biases for present and future climates are often assumed to be 
the same (Graham 2007).  This assumption is the basis for “bias corrections,” which are 
statistical models applied to model output statistics to better match observations.  Bias 
correction is typically required to shift the climatology, i.e., long term averages, to a 
reasonable range.  However, the validity of the assumption that these relationships will 
not change can be questioned.  In fact, it is identical to the question underpinning 
statistical downscaling.  The fact that dynamical downscaling often requires statistical 
bias correction calls into question the value it adds over purely statistical approaches.   
 
Another concern is the lateral boundary interface.  RCMs use fixed lateral fluxes into 
and out of their domain according to the large-scale conditions provided by the GCM 
(Leung et al 2003). The evolution of climate within the RCM does not effect the output 
provided by the GCM, which is not true in reality.   For monthly mean atmospheric 
states, biases in lateral boundary conditions generally contribute more to the overall 
uncertainty than biases in the initial conditions. (Wu et al 2005).  The lack of feedback or 
bi-directionality between RCMs and GCMs contributes to this deficiency. 
 
The fact that RCMs are computationally demanding is also a drawback; typical 
prediction/analysis periods are restricted (often to 10 years) due to processing 
limitations, and are still not meeting needs of spatially explicit models (Xu et al 2005; 
Kunstmann and Jung 2005; Wilby and Wigley 1997). 
 
Temporal resolution remains an issue; as time increments decrease, uncertainties 
generally increase, since chaotic atmospheric dynamics dominate at short timescales 
(Leung et al 2003; Roberts 2006, personal communication).  The reliability in GCMs, 
carried through to RCMs for temporal resolution less than monthly, is uncertain, 
specifically pertaining to hydrologic variables of interest (Wilby et al 1998).   
 
Models risk smoothing variability in an unnatural manner.  Also, hydrologic models are 
calibrated based on existing conditions (Bergstrom et al 2001).  In one study (Booji 
2004) uncertainty under climate change projections for river flooding (40%) proved 
significantly greater than uncertainty under current climate conditions (10%.) 
 
Questions regarding the value of dynamical downscaling exist, given their complexity.  
Their response under future conditions may be different than in the past, rendering the 
bias correction through some statistical or empirical method inapplicable.  Although 
these models arguably account for atmospheric and physical changes in the 
environment, they have not been shown to lead to large improvement in hydrological 
simulation after bias correction and spatial disaggregation (Wood et al. 2004).  Their 
value is strongest where orographic effects and other localized surface conditions are 
significant climate influences.  In addition, they play an important role in diagnostic 
studies of regional climate and have an additional role where observations are limited.    
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7.  Statistical Downscaling 
 
 
 
 
 
 
 
 
 
 
 
General Theory  
Statistical downscaling consists of modeling the relationship between GCM output and 
observations to produce results that are useful as inputs to sector models (e.g., crop or 
hydrologic models) or for direct use in decision making.  The general principle is to form 
empirical relationships between predictors and historically observed values, then apply 
the empirical relationship to future projections.  Statistical models are simpler in nature, 
significantly easier to construct and manage, and require much less computational time 
than dynamical downscaling.  The usual approach is to use a statistical model to 
downscale a GCM output, (e.g. precipitation) to a resolution that is used as input to a 
sector model (e.g., hydrological model).  This is where statistical models are particularly 
useful:  they can be designed to produce the quantity that is of interest for a particular 
application.    
 
 
Spatial downscaling using statistical methods is possible through a variety of methods.  
Straight linear interpolation may be the simplest statistical technique for downscaling 
large-scale GCM projections to finer grids or points, representative of a hydrological 
modeling scale (Mimikou et al 2000; Arnell 2002).  Variations of this include adding 
anomalies from GCM projections to an observed baseline record (Maurer and Duffy 
2005; Maurer 2007) or using inverse square interpolation (Tripathi et al 2006).  To add 
spatial variability to the above GCM interpolations, gridded anomaly fields created by 
aggregation and interpolation of climatological information may be added (Wood et al 
2004).  A second approach utilizes large-scale atmospheric or surface patterns or 
indices as predictors to downscale a hydroclimatic variable.  Uncertainty estimates are 
achievable by applying Monte Carlo or stochastic methodologies to generate forecast 
ensembles.   
 
Bias correction is often a component of statistical (and as noted earlier dynamical) 
downscaling.  The basis for bias correction is to shift GCM output to a reasonable 
range, based on observed conditions.  Typically this involves matching monthly or 
seasonal average GCM output with observed averages.  Common methods include 

 
• Statistical downscaling utilizes relationships between GCM output and historical data to produce 

finer spatial and temporal resolution climate data at the regional level.   
• Methods are typically as effective and less expensive than dynamical downscaling. 
• Especially useful for temporal downscaling (from monthly to daily values) 
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quantile, histogram, or probability mapping of GCM projections (precipitation, 
temperature, etc) to baseline observations using probability density functions or 
cumulative distribution functions (Maurer and Duffy 2005; Woods et al 2004; Maurer 
2007; Vanrheenen et al 2004; Christensen et al 2004; Hayhoe et al 2004; Payne et al 
2004).  The following figure (IRI working paper) provides a visualization of this process. 
 

 
   
 
The figure demonstrates probability mapping of monthly GCM precipitation data based 
on two cumulative distribution functions (CDF): i) the historical observed data and ii) 
GCM produced historically simulated data (ensembles if available.)  Each CDF is fit with 
a gamma distribution, with equal shape and scale parameters.  The relationship 
between the CDFs is used to shift the GCM output to match the observed range of 
precipitation values.   
 
Linear or multivariate regression is frequently employed for downscaling using synoptic 
patterns that are well simulated by GCMs and local variables instrumental in 
hydrological modeling (Wilby et al 1998; Xu 1999b).  One deviation includes regression 
of a cumulative distribution function based on GCM output and local precipitation 
statistics (e.g. daily rainfall amounts or probabilities of wet/dry days) (Nawaz et al 2007).  
Another uses regression for matching observed and projected probability density 
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functions of daily time series (Dettinger et al 2004).  A third alternative, the expanded 
downscaling method (Burger 1996), utilizes the relationship between local climate 
anomalies and global circulation anomalies, and purports to better model extreme 
precipitation in comparison to traditional regression (Menzel et al 2006).  
 
Additional statistical or empirical methods utilized for climate change downscaling in the 
context of hydrological modeling also exist, including weather generators and artificial 
neural network transfer functions (Wilby et al 1998), circulation-based analogues (Xu, 
1999b), hybrids between a stochastic weather generator and a regression method 
(Wilby and Harris 2006; Wilby et al 2006), and support vector machine approaches 
(Tripathi et al 2006).   
 
 
Statistical techniques for temporal downscaling are also available, most commonly used 
to produce realistic series of daily rainfall.  Although GCMs simulate at sub-daily 
timescales, they are typically unreliable for aggregation less than months or seasons.  
The simplest method for downscaling temporally (say monthly to daily) is to divide the 
sum evenly among days, although this may be no more informative than using straight 
GCM output.  A common approach involves selecting a month from the observed record 
and scaling (precipitation) or shifting (temperature) daily values using GCM projected 
anomaly fields means (Maurer and Duffy 2005; Woods et al 2004; Maurer 2007; 
Hayhoe et al 2004; Salathe 2005).  A variation uses “change factors” (Wilby and Harris 
2006), which use the changes in monthly means of variables from GCM projections to 
adjust a daily baseline period to reflect these changes.  Consequently, the baseline and 
scaled projections differ only by means, not variability or range.  Other techniques 
incorporate an additive shift (temperature) or multiplicative scaling (precipitation) 
approach between baseline observations and GCM projections (Wood et al 2002; 
Salathe 2005).  For example, to temporally downscale precipitation, the following 
equation or similar may be used: 
 









=
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P
PP *  

 
where P is precipitation, f is future, o is observed, d is daily, and m is monthly.  Monthly 
values are based on means or medians of observed or future months.  None of these 
methods account for potential changes in number of rainy days or shifting of seasons, 
etc.  Stochastic “weather generators” are also frequently employed (Wilby et al 1998), 
as are first-order Markov chain models.    These statistical models produce daily values 
in a random manner that is consistent with the statistics provided by the GCM output.   
 
 
Assumptions and Concerns 
Statistical downscaling approaches are favorable for being based on standard, 
accepted principles, computationally inexpensive, flexible, and their explicit use of 
observed records (von Storch et al 2000); however, they also assume no future change 
in predictor/predictand relationship, require long calibration records, and demonstrate 
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skill dependent on climatic region and season (Goodess et al 2001; Wetterhall et al 
2005a,b; Xu 1999). 
 
The assumed relationship of stationarity between predictors (large-scale atmospheric or 
surface patterns) and the predictand (typically local precipitation) with statistical 
downscaling techniques is called into question under a changing climate (Charles et al 
2004).  If the assumption is to hold, the predictors chosen must be robust and fully 
represent the climate change signal (Tripathi et al 2006; Kavvas et al; Xu 1999b).  If not, 
it is conceivable that the choice of predictors may even change the signs of the 
downscaled climate change signals.  Recent experiments with predictor–predictand 
relationships, however, suggest that the stationarity assumption is not invalidated under 
future climate forcing provided the choice of predictors is judicious (Leung et al 2003; 
Murphy 2000).  Wilby et al (1998) recommend including sufficient predictors, yet still 
strive for parsimony. 
 
Another potential drawback is the lack of a universal, best-performing method for all 
locations (Wetterhall et al 2005a,b).  While certain methods have proven less effective 
for hydrological modeling purposes (linear interpolation, Wood et al 2004), different 
models stand out, depending on spatial resolution and domain and the choice of 
downscaled variable.   
 
Statistical downscaling models may also suffer from short observational records, 
specifically in reference to calibration.  These short time series may produce 
relationships or probability distributions not representative of historical conditions.  
Quantifying sampling bias, however, may be achievable through a Monte Carlo type 
framework (Wood et al 2004.) 
 
An advantage of statistical models is the ability to characterize and incorporate the 
uncertainty of the downscaled results.  This is particularly important in hydrologic 
modeling applications, where uncertainties in climate change scenarios and 
downscaling has been found to outweigh uncertainties in hydrological model 
parameters (Wilby and Harris 2006; Menzel et al 2006).  Statistical models provide the 
ability to fully explore the implications of the uncertainty that accompanies downscaling.  
One common approach to quantifying total model uncertainty is through stochastic 
analysis utilizing multiple models (GCMs, emission scenarios, downscaling techniques, 
hydrological models and hydrological parameters) to perform Monte Carlo simulations 
(Nawaz et al 2007; Wilby and Harris 2006).  Another approach involves moving toward 
a probabilistic framework by assigning weights or using conditional probabilities (Wilby 
et al 2006).   
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8.  Hydrologic Modeling from Downscaled GCMs 
 
 
 
 
 
 
 
 
 
 
A variety of approaches exist for generating hydrologic variables, such as streamflow, 
from GCM output.  Hydrologic models transform climate variables such as precipitation 
and temperature into these hydrologic variables.  In general, the hydrologic modeling 
component of downscaling is a source of much less error and uncertainty than the 
climate model components.  There are a variety of validated hydrologic models that will 
serve effectively, including statistical models, lumped parameter models and distributed 
models.  Distributed models produce spatially distributed results and require large input 
datasets.  Uncertainty increases as a result of the many parameters and the difficulty in 
calibration.  Lumped parameter models and statistical models allow explicit 
representation of uncertainty, are easily calibrated and have reduced parameter 
uncertainty, but may require long timeseries data.  In general, the choice of hydrologic 
model will be contingent on the particular application of interest.   
 
Fully distributed, physically-based models, such as water balance models or land 
surface models, require a large set of input climate data.  For this reason, a dynamic 
downscaling model (RCM) is typically used since it generates this data automatically.  
Lumped parameter models, rainfall runoff models and statistical models require less 
input data.  Statistical downscaling is then favored, since it can be designed to produce 
the input variables actually required relatively efficiently.   
     
Fully distributed hydrological models exist at a variety of scales.  Global water-balance 
models (e.g. Vorosmarty et al 2000) calculate a water balance for each grid (0.5°x0.5°) 
globally and route water to oceans or inland sinks in a very simple manner, given limited 
available data.  Global routing models use gridded runoff to compute lateral water flow 
only; these models typically include a dynamic vegetation component for 
evapotranspiration and carbon fluxes (Gerten et al 2004).  Finally, macro-scale water-
balance models use GCM or RCM output for continental scale hydrologic simulations, 
focusing on large river basins; models are transferable from one continent to another 
(Xu et al 2005). An example is the Variable Infiltration Capacity (VIC) model, a semi-
distributed, grid based hydrologic model, which has been widely applied (Liang et al., 
1999).  In all cases, these models are limited by the large number of parameters and 
limited observations that are available to calibrate those parameters.  

 
• Hydrologic models add little uncertainty relative to the uncertainty associated with climate models 
• The choice of hydrologic model should be determined in accordance with the ability to estimate 

the desired variable 
• Hydrologic model choice affects the downscaling method selection 

IRI Technical Report 08-05: IRI Downscaling Report



 

 23 

 
9.  Downscaling Applications in Africa  
 
 
 
 
 
 
 
 
 
 
In general, downscaling efforts for regional climate in Africa have focused on diagnostic 
analyses of climate dynamics.  The primary example is the use of regional climate 
models in various experimental designs to investigate Sahelian drought in West Africa 
(e.g., Jenkins et al., 2002; Jenkins et al., 2005; Giannini et al., 2003; Herceg et al., 
2007).  There are several efforts to downscale climate change projections to Africa 
regions, and fewer studies of downscaling for hydrologic applications.  The most 
commonly utilized regional models are the RegCM3 of ICTP, the MM5 of Penn State 
University/NCAR (Grell et al., 1994), and the PRECIS model (Providing REgional 
Climates for Impacts Studies; Jones et al., 2004) of the Hadley Centre, UK.  Given the 
uncertainty that reigns for much of Africa climate projections (see section 3), these 
studies place emphasis on characterizing the responses of regional climate features to 
climate change dynamics.  The focus is on establishing a better understanding of 
general responses of regional climate over specific predictions of local impacts.  This is 
also our recommended approach for any downscaling activities in Africa.   
 
Two illustrative examples of dynamical downscaling of climate change projections for 
hydrological modeling are identified here.  The first addressed hydropower potential 
over southern Africa using downscaled precipitation and temperature for 2070-2079 
(Mukheibir 2007). The study used two RCMs to produce early and late summer 
(seasonal) total precipitation and average temperature (Tadross et al 2005).  The MM5 
and PRECIS regional climate models were used for downscaling.  Both RCMs were 
nested within 10 years of control and future integrations of the GCM projections 
HadAM3P, which are forced by SSTs from HadCM3 and the A2 emissions scenario 
(Jones et al., 2004).  Results are primarily non-quantitative, and focus on the limited 
information available regarding potential impacts at the hydroelectric sites.  The authors 
encourage further study at the basin level to determine the effects of climate change 
before altering energy strategies. 
 
The second study dealt with water availability in the Volta basin, West Africa, for 2030-
2039 (Kunstmann and Jung 2005).  Projections from the ECHAM4 (Roeckner et al 
1996) GCM were downscaled using the  MM5 RCM at three spatial scales: 81x81 km2, 
27x27 km2, and 9x9 km2.  Additionally, the RCM was linked with a land surface model to 
account for feedbacks between soil moisture, temperature, vegetation, soil properties, 

 
• Many downscaling studies have been performed for diagnosis of regional climate features (e.g., 

Sahelian drought). 
• Fewer downscaling studies for hydrologic applications have been completed. 
• Emphasis is on providing better understanding of regional climate and responses to climate 

change, over specific projections of change.  
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and atmospheric conditions on monthly timescales.  The IS92a-scenario, which 
assumes a 1% annual increase in CO2 starting in 1990 was simulated.  The results 
indicated a small number of positive trends in historical river discharge during the wet 
season, and predicted increases of 18% in mean annual surface runoff, compared with 
1991-2000, for the smallest spatial scale. 
 
Research studies employing statistical downscaling over Africa are more numerous 
than dynamical downscaling.  Downscaling climate change projections over Africa in 
general is still not very common.  One study assessed a water balance model’s 
sensitivity to various climate change scenarios on White Nile streamflow using the 
HadCM1 and CM2 GCMs and used spatial interpolation for downscaling (Sene et al 
2001).  The authors found that some idiosyncratic features of the White Nile favored a 
network simulation approach.   
 
A second study addressed Blue Nile streamflow sensitivity to climate change and 
associated uncertainties for three periods in the 21st century (Nawaz et al 2007).  
Downscaling techniques included regression based on cumulative distribution functions 
of CGCM2, ECHAM4, and HADCM3 GCM output and local precipitation statistics, in 
addition to a multidimensional stochastic rainfall generator.  Streamflow projections 
initiated by two of the three GCMs forecasted reductions in future mean flow. 
 
A third study considered impacts on Nile basin discharge in 2025 from the Blue Nile and 
Lake Victoria sub-basins (Conway and Hulme 1996).  Three GCMs were chosen, a dry 
(Geophysical Fluid Dynamics Laboratory [GFDL; Weatherald & Manabe, 1986]), a wet 
(Goddard Insti tute for Space Studies [GISS; Hanson et al., 1984]) and a composite 
(weighted mean of seven GCMs) based on precipitation changes; precipitation and 
temperature are interpolated by the eight adjacent grid boxes using a Gaussian space-
filtering method.  Results indicate a small surplus in Egyptian flows no matter the state, 
given current demand projections.   
 
Another study of Nile basin streamflow (Yates and Strzepek 1998), used spatially 
averaged temperature and precipitation for 12 sub-basins using interpolation through 
GIS by 6 GCMs (GFDL, GFDLT, GISS, UKMO, MPI, CCC).  Most GCMs predicted 
significantly larger flows in Equatorial Africa and expansion of Sudd swamps.  A wide 
range of flows was predicted for the Ethiopian highlands. 
 
A final study evaluated potential changes in surface water supply across continental 
Africa under projected climate changes.  Scenarios were based on results from a group 
of six GCMs, assembled by the Climate System Analysis Group in Cape Town, South 
Africa, with downscaled precipitation obtained through empirical methods (self-
organizing maps.)  This precipitation series resulted in a projected decrease in perennial 
drainage area, with implications surface water access across 25% of Africa by the end 
of this century (Wit and Stankiewicz 2006). 
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10.  Summary Recommendations 
 
Due to the limitations of regional climate models and GCMs, and the general chaotic 
nature of climate, any downscaling effort is fraught with uncertainty.  For this reason, 
downscaling is best understood as an attempt to characterize regional climate and its 
response to climate change.  No single model, group of models or specific methodology 
has emerged as definitive for downscaling.  In fact, selecting “better” GCMs is difficult; 
using multi-model ensemble means is the recommended approach to dealing with 
model errors and the natural uncertainty of the climate system.  Downscaling efforts 
should exploit all available information, including output from multiple GCMs, regional 
dynamic models and statistical models that utilize empirical relationships.  Where GCMs 
do not agree, statistical modeling approaches may be used to reduce the uncertainty of 
future climate by characterizing the major modes of variability and trends based on 
historical observations.  Where GCMs do agree, downscaling models can increase the 
temporal resolution and spatial resolution of the GCM signals.  Dynamical downscaling 
is preferred where topography and local scale features, such as land use patterns and 
vegetation have large effects on regional climate.  They may also be more useful in land 
management applications.  All dynamical downscaling approaches typically utilize a 
form of “bias correction” which is a statistical model applied to the dynamical model out 
puts.  Statistical downscaling is effective for temporal downscaling, for example, 
providing realistic daily rainfall values from monthly (or daily) GCM output.  Statistical 
models are also recommended where particular hydrologic variables are of interest, as 
they can be “tailored” to provide estimates of desired quantities. The choice of 
hydrologic model to provide streamflow estimates should be determined by the specific 
hydrologic variables required. The hydrologic models, especially statistical or lumped 
parameter models, add very little uncertainty in comparison to the climate models. 
 
Downscaling “Best Practices” 
 
 

• Climate change projections should be based on multi-GCM ensembles 
• Downscaling is appropriate where there is consensus on the direction of change in 

the GCMs 
• Downscaling must be based on an understanding of how regional climate is 

expected to respond to large scale climate forcings and relative to the dominant 
modes of climate variability (interannual, decadal) at a particular location. 

• In any specific case, the selection of downscaling methodology should be based 
on the particular application in terms of the variables of interest, time frame and 
spatial resolution required, the existence of previous studies and the availability of 
historical observation data.   

• Statistical downscaling tends to be a better value than dynamical downscaling for 
hydrologic applications, being as effective and less expensive 

• Dynamical downscaling is valuable where local topography and land use or 
vegetation have significant influence on regional climate.   

• Temporal precipitation downscaling to resolutions of daily scale is an active 
research area, with statistical approaches showing the most promise. 
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• Results of climate change projections and downscaled regional results should be 
understood within the context of climate variability at interannual and decadal 
timescales, as well as socioeconomic changes. 
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